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Abstract. In order to fully consider the local spatial constraints between neighboring objects in
object-based change detection (OBCD), an OBCD approach is presented by introducing a
refined Markov random field (MRF). First, two periods of images are stacked and segmented
to produce image objects. Second, object spectral and textual histogram features are extracted
and G-statistic is implemented to measure the distance among different histogram distributions.
Meanwhile, object heterogeneity is calculated by combining spectral and textual histogram
distance using adaptive weight. Third, an expectation-maximization algorithm is applied for
determining the change category of each object and the initial change map is then generated.
Finally, a refined change map is produced by employing the proposed refined object-based MRF
method. Three experiments were conducted and compared with some state-of-the-art unsuper-
vised OBCD methods to evaluate the effectiveness of the proposed method. Experimental results
demonstrate that the proposed method obtains the highest accuracy among the methods used in
this paper, which confirms its validness and effectiveness in OBCD. © 2017 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.11.016024]

Keywords: change detection; segmentation; spatial constraints; expectation-maximization;
Markov random field.

Paper 16702 received Sep. 20, 2016; accepted for publication Jan. 19, 2017; published online
Feb. 7, 2017.

1 Introduction

Remote sensing imagery is widely used in the research of change detection (CD) for the
advantages of large coverage areas, short revisit time as well as abundant image information.
CD is of great significance in the field of land use and land cover investigation, resource
survey, urban expansion monitoring, environment assessment, and rapid response to disaster
events.1–4

In the past decades, numerous CD methods have been proposed, and the investigations can
mainly be divided into pixel-based and object-based methods.5 In the first case, the change fea-
tures from two images are compared for each pixel independently. In the second case, the images
are segmented into disjoint and homogeneous objects, and then change features are extracted and
compared for the objects. Pixel-based CD methods are mainly employed in medium- and low-
resolution remote sensing imagery. Many pixel-based CD techniques have been developed,
including postclassification comparison,6 change vector analysis,7 level set method,8 kernel-
based, and support vector machine method.9

With the ever-increasing availability of high-resolution images, object-based change detec-
tion (OBCD) has become increasingly popular for its great advantages over pixel-based CD. In
OBCD, it is easy to model contextual information by analyzing spatial relationships and arrange-
ments of image objects, and CD accuracy is less sensitive to the noises caused by radiometric
calibration and image registration.10,11 Generally, two main OBCD strategies can be categorized.
The first strategy is carried out by object feature similarity analysis, where object features are
extracted and feature vectors are constructed first, and change map is then generated by similarity
analysis of feature vectors.12–14 The second strategy is employed by class labels comparison,
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where image classification is implemented using object features, and change map is then gen-
erated by the comparison and analysis of the class membership.15–17

However, within the above OBCD methods, all objects are treated independently as a whole.
In addition to that, due to the limitation of segmentation, different objects cannot be separated
well and may suffer from spatial interactions to each other. To tackle these limitations, this paper
presents an OBCD method by combining object-based expectation-maximization (OEM) and
refined Markov random field (RMRF) model (OEM-RMRF), where local spatial constraints
between neighboring objects can be considered well. The proposed approach mainly consists
of four steps, as shown in Fig. 1. First, two periods of images are stacked as one image with
double bands, and image objects are generated using watershed segmentation method. Second,
object spectral and textual features are extracted by employing spectral and textual histograms,
and G-statistic is implemented to measure the distance between different histogram distributions.
Meanwhile, object heterogeneity is calculated by combining spectral and textual histogram
distance with adaptive weight. Third, an EM algorithm is applied for determining the change
category of each object and initial change map is then generated. Finally, a refined MRF model is
constructed by utilizing object spectral, shape and size features, and the refined change map is
then generated by applying the refined MRF model.

2 Proposed Change Detection Method

Considering two multispectral images X1 and X2 of size M × N with B bands acquired over the
same geographical area at two different times, suppose that such images have been well pre-
processed, including radiometric calibration and coregistration. Let Xb

i (i ¼ 1, 2) be the values of
M × N pixels in the b’th (1 ≤ b ≤ B) band of Xi, the difference image XD can be defined as

EQ-TARGET;temp:intralink-;e001;116;161XD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXB
b¼1

ðXb
1 − Xb

2Þ2
vuut : (1)

2.1 Object Features Extraction and Heterogeneity Calculation

In OBCD, objects are generated by either image segmentation or vector-raster integration, where
image segmentation is most used for the absence of corresponding vectors. In our study, two
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Fig. 1 Flow chart of the proposed CD method.
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periods of images are stacked as one image with 2 × B bands, and then watershed segmentation
is implemented to generate image objects.18 To measure the similarity of two corresponding
objects, both spectral and textual features are extracted to avoid the drawback of using single
feature, where raw gray values are used to represent object spectral feature while object textual
feature is delineated by combining local binary pattern (LBP) and local contrast (LC).19

Histogram is the statistic of feature values within the object, which is a robust and effective
feature description method. In this method, object spectral feature is computed using color
histograms, while textual feature is calculated by utilizing the joint histograms of LBP and LC.
Meanwhile, G-statistic,20 which is a nonparametric statistical method and a modification of
Kullback–Leibler distance, is utilized to measure the distance of two histograms.

Let L be the gray level, let fbi ðb ¼ 1;2; : : : ; BÞ be the frequency of gray value i in the object
on band b. Hence, the histogram distance on band b can be calculated as:

EQ-TARGET;temp:intralink-;e002;116;592Gb ¼ 2

�X
t1;t2

XL−1
i¼0

fbi Inðfbi Þ −
XL−1
i¼0

�X
t1;t2

fbi

�
In

�X
t1;t2

fbi

�
þ 2In2

�
: (2)

Then, object heterogeneity can be calculated by combining spectral and textual histogram
distance. Assuming Gb

s and Gb
t represent spectral heterogeneity and textual heterogeneity,

respectively, the heterogeneity after the combination is defined as:

EQ-TARGET;temp:intralink-;e003;116;504Hb ¼ ωsGb
s þ ωtGb

t ; (3)

where ωs and ωt represent spectral weight and textual weight, respectively, which satisfies the
formula ωs þ ωt ¼ 1. In our test, ωs and ωt are calculated using the method proposed by Hu.18

Moreover, image entropy of each band is calculated and band weight ωb is defined as:

EQ-TARGET;temp:intralink-;e004;116;437ωb ¼ EðbÞ∕
XB
i¼1

EðiÞ; (4)

EQ-TARGET;temp:intralink-;e005;116;387EðbÞ ¼ −
XL
l¼0

pðlÞ log½pðlÞ�; (5)

where EðbÞ represents the entropy value of band b, L denotes the gray level in band b, and pðlÞ
is the probability of gray l in band b.

After the calculation of spectral and texture weights and band weights, we get the final
heterogeneity for each object, which is defined as follow:

EQ-TARGET;temp:intralink-;e006;116;294Hb ¼
XB
b¼1

ωbðωsGb
s þ ωtGb

t Þ: (6)

2.2 Generation of Initial Change Map

All the values of object heterogeneity make up a set H ¼ fh1; h2; : : : hi; : : : ; hNg, N is the num-
ber of objects. hi represents the heterogeneity of i’th object. Elements in the setH can be divided
into two categories: changed class and unchanged class. The heterogeneity values of the changed
class are large while the values of the unchanged class are small. In this paper, elements in the set
H are assumed to be a Gaussian mixture distribution composed of two Gaussian components,
which are defined as follows:

EQ-TARGET;temp:intralink-;e007;116;134pðhkÞ ¼ pðωcÞpðhkjωcÞ þ pðωnÞpðhkjωnÞ k ¼ 1;2; : : : ; N; (7)

EQ-TARGET;temp:intralink-;e008;116;91pðhkjωÞ ¼
1ffiffiffiffiffi
2π

p
δω

exp

�
−
ðhk − μwÞ2

2δ2ω

�
ω ∈ fωc;ωng; (8)
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where ωc and ωn represent the class of changed object and unchanged object, respectively.
pðωcÞ and pðωnÞ denote the proportions of changed objects and unchanged objects, and
pðωcÞ þ pðωnÞ ¼ 1. μω is the mean value of the object, δω is the standard deviation of the object.

To estimate the parameters of Gaussian mixture distribution, EM algorithm is employed,
which can effectively find local maximum likelihood value in the missing data.21 Based on
the estimates of Gaussian mixture distribution, Bayes discriminant rule is then applied to cal-
culate the threshold for classifying the objects into “change” and “no-change,” whereby initial
change map is generated.22

2.3 Constructing of the Refined MRF Model

In order to introduce the MRF model, neighbor system and clique system of each object have to
be defined first. In traditional pixel-based CD method using MRF, 4-neighborhood or 8-neigh-
borhood is mostly utilized to incorporate spatial information.22–24 However, this is not the case in
OBCD for the number of neighboring objects varies dynamically. Assuming that only the neigh-
boring objects influence the class property of the central object, we use the neighboring objects
as the neighbor system, which is shown in Fig. 2.

Let Oi be the i’th object. As for O5, four neighboring objects are available, namely O1, O2,
O3, O4, and the corresponding clique system are β1, β2, β3, β4, which means that only the four
objects are used when introducing MRF model for O5.

Suppose the object difference image X ¼ fxO1
; xO2

; xO3
; : : : ; xOn

g is given, and
L ¼ fl1; l2; l3; : : : ; lcg denotes the class label of the object difference image and c is the number
of classes. Then, the maximum a posteriori is adopted to produce the labels of objects, and the
formulation could be defined as:

EQ-TARGET;temp:intralink-;e009;116;447L̂ ¼ argmaxfPðXjLÞPðLÞg; (9)

where L̂ is the true label for the image and PðXjLÞ is the joint probability density function of
the object feature values in the object difference image. PðLÞ is a prior probability distribution of
the class labels of the object difference image.

In terms of MRF approach, maximizing the posterior probability in Eq. (9) is equivalent to
minimize the following energy function UMRFðxOi

Þ for each object xOi

EQ-TARGET;temp:intralink-;e010;116;354UMRFðxOi
Þ ¼ UspectralðxOi

Þ þ UspatialðxOi
Þ; (10)

where UspectralðxOi
Þ describes the spectral energy function from the object difference image and

UspatialðxOi
Þ represents the spatial energy term calculated from the local neighboring objects of

object xOi
.

A variety of studies have been carried out on difference image analysis in unsupervised
CD, where a Gaussian mixture model is mostly applied to model the difference image
effectively.21,22,25,26 Based on this, we assume that the object feature values of the given
class in the object difference image are independent to each other and supposed to be
Gaussian distribution. Hence, the detailed spectral energy term can be written as:

Fig. 2 An illustration of neighborhood and clique system.
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EQ-TARGET;temp:intralink-;e011;116;735UspectralðxOi
Þ ¼ 1

2
Inð2πjΣcjÞ þ

1

2
ðXOi

− μcÞΣ−1
c ðXOi

− μcÞT; (11)

where μc and Σc are the mean vector and covariance matrix of class c, respectively, which can be
calculated from the initial change map generated by EM algorithm. Furthermore, the spatial
energy of object xOi

is defined as:

EQ-TARGET;temp:intralink-;e012;116;667UspatialðxOi
Þ ¼

X
j∈Ni

I½lðxOi
Þ; lðxOj

Þ�; (12)

where Ni denotes the spatial neighboring objects of object xOi
, Ið:; :Þ is the indicator function,

which measures the influence of two neighboring objects, lðxOi
Þ and lðxOj

Þ represent the cat-
egory labels of the object xOi

and its neighboring object xOj
, respectively. Then, a graph-cut

algorithm is utilized to search for the optimal result of Eq. (10) to solve the minimum value
of MRF energy function.27

Both spectral and spatial features are considered to measure the influence of two neighboring
objects. For the object xOi

and its neighboring object xOj
ðj ∈ NiÞ, it is assumed that the influ-

ence of xOj
on xOi

will be larger if the spectral difference of two adjacent objects is smaller, the
size of xOj

is larger and the length of shared boundary is longer. Hence, the indication function
can be defined as:

EQ-TARGET;temp:intralink-;e013;116;504I½lðxOi
Þ; lðxOj

Þ� ¼

8><
>:

jμxOi
−μxOj

j
Lλ
b

þ β
nOj

nOi
þnOj

if lðxOi
Þ ≠ lðxOj

Þ
jμxOi

−μxOj
j

Lλ
b

− β
nOj

nOi
þnOj

if lðxOi
Þ ¼ lðxOj

Þ
; (13)

where μxOi
and μxOj

are the mean value of object xOi
and xOj

in object difference image, respec-
tively, Lb denotes the length of shared boundary, λ is defined as the spatial parameter to adjust
the constraint of the shared boundary. β is the penalty coefficient defined manually, which tunes
the influence of neighboring object xOj

on xOi
, nOi

and nOj
are the size of object xOi

and xOj
.

By this way, the refined MRF model is introduced in OBCD, and the final CD map would fully
consider the spatial attraction among neighboring objects.

3 Data Set Description and Experiments Design

3.1 Description of Data Sets

Three multitemporal remote-sensing image data sets were applied in the proposed method. The
first dataset is made up of two SPOT5 multispectral images (2644 × 1938 pixels, 2.5 m per
pixel), acquired over the region of Guangzhou (China) in November 2006 and again in
November 2007. A section (877 × 738 pixels) of the two scenes was selected as the subset
for the experiment, as shown in Figs. 3(a) and 3(b). The second data set refers to two
SPOT5 multispectral images (2644 × 1938 pixels, 2.5 m per pixel) obtained over another
region of Guangzhou (China) in each October of 2006 and 2007, separately. A subset (1239 ×
923 pixels) of the entire scene was cropped as the test site, as shown in Figs. 4(a) and 4(b).
The third data set denotes two GF-1 fusion images (18;192 × 17;999 pixels, 2 m per pixel)
acquired over the region of Huangyan (China) in November 2013 and January 2015, a subset
(554 × 527 pixels) of the two scenes was clipped for the experiment, as shown in Figs. 5(a) and
5(b). All the datasets were automatically coregistered with the algorithm developed by Zhang
et al.28 The root mean square error of registration was less than 0.5 pixels. The relative
radiometric correction was implemented by applying the pseudoinvariant feature method.29

For each testing data set, a reference change map was prepared for quantitative evaluation
purposes, which was manually generated according to a detailed visual interpretation as shown
in Figs. 3(c), 4(c), and 5(c). The white areas are the changed areas while the black areas are the
unchanged.
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3.2 Experiment Design

The proposed OEM-RMRF method was compared to the OEM21 and OEM-MRF (where origi-
nal MRF model was used)22 methods by experimenting on three multispectral remote sensing
datasets to verify its effectiveness. The CD results are evaluated by four indexes: (1) false alarm

Fig. 4 Images in data set 2. (a) Image acquired in 2006, (b) image acquired in 2007, and (c) refer-
ence change map.

Fig. 3 Images in data set 1. (a) Image acquired in 2006, (b) image acquired in 2007, and (c) refer-
ence change map.

Fig. 5 Images in data set 3. (a) Image acquired in 2013, (b) image acquired in 2015, and (c) refer-
ence change map.

Peng and Zhang: Object-based change detection method using refined Markov random field

Journal of Applied Remote Sensing 016024-6 Jan–Mar 2017 • Vol. 11(1)



rate (FA: number of unchanged pixels wrongly detected as changed pixels over the total number
of unchanged pixels), (2) miss alarm rate (MA: number of changed pixels detected as unchanged
pixels over the total number of changed pixels), (3) overall accuracy (OA: total number of
rightly detected pixels over the total number of pixels), and (4) Kappa coefficient.30

3.3 Parameter Setting for Experiments

The smooth parameter β is of great importance when applying the MRF model. Noise pixels or
objects could not be removed when β is set small, while oversmooth results will be caused when
β is set large. In this section, a series of β values are set and the corresponding CD results are
analyzed. Figure 6 shows the comparison of the performance of OEM_MRF and OEM_RMRF
method in terms of different β. As can be seen from Fig. 6, kappa coefficient increase with
the increase of β at first, while gradually decrease with the further increase of β after reaching
a peak value. And the optimal β should be set at 0.45 in data set1 and data set 3, while it is set at
0.20 in data set 2. The maxi number of iterations of graph-cut algorithm in OEM_MRF and
OEM_RMRF method is fixed as 10. The spatial constraint parameter λ is set at 0.5 as suggested
by Hu.18

4 Experimental Results and Analysis

Figure 7 shows the experiment results carried out on data set 1. Due to the limitation of OBCD,
many linear objects [e.g., region A and region B in Fig. 7(a)] are falsely detected as changed.
Spatial constraints between neighboring objects are well considered in the MRF model, and the
false alarms caused by linear objects can be well removed as can be seen in Figs. 7(b) and 7(c).
Moreover, some false alarms [e.g., region C in Fig. 7(a)] due to the limitation of OEM can also
be removed when introducing MRF model. All neighboring objects are treated with the same
influence on the central objects in OEM_MRF, which is not the real case especially when the
neighboring objects have shape and spectral difference. Compared with OEM_MRF, object
spectral difference, size difference, and the length of shared boundary are taken into account
to construct a refined MRF model in OEM_RMRF, whereby less false alarms arise and the
CD accuracy is improved. The kappa coefficient of OEM_RMRF achieves the maximum of
0.92 as shown in Table 1, which verifies the effectiveness of our proposed method.

The visual results of different methods for data set 2 are shown in Fig. 8. We can see that there
exist many falsely detected linear objects [e.g., regions A, B, C in Fig. 8(a)] with OEM method,
which seriously affects the CD accuracy. And some false alarms [e.g., regions D, E in Fig. 8(a)]
were caused due to the limitation of OEM still exist widely. When introducing the MRF model,
the OBCD accuracy increases dramatically, where the FA falls sharply by 24.72% and 27.71%,

Fig. 6 Influence of different β values on the performance of OEM_MRF and OEM_RMRF method.
(a) Kappa coefficient for data set 1. (b) Kappa coefficient for data set 2. (c) Kappa coefficient for
data set 3.
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Fig. 7 CD results obtained using different methods for data set 1. (a) OEM. (b) OEM_MRF.
(c) OEM_RMRF.

Table 1 Summary of the quantitative evaluations for OBCD methods on the three data sets.

Data set Methods FA (%) MA (%) OA (%) Kappa

Data set 1 OEM 31.19 1.06 92.79 0.75

OEM_MRF 8.84 1.34 97.53 0.90

OEM_RMRF 4.70 1.65 97.91 0.92

Data set 2 OEM 46.17 1.99 91.50 0.51

OEM_MRF 21.45 3.10 95.95 0.64

OEM_RMRF 18.46 3.53 96.28 0.65

Data set 3 OEM 47.92 1.08 90.70 0.61

OEM_MRF 19.28 3.47 95.68 0.71

OEM_RMRF 16.87 3.50 96.32 0.73

Fig. 8 CD results obtained using different methods for data set 2. (a) OEM. (b) OEM_MRF.
(c) OEM_RMRF.
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respectively, in the OEM_MRF and OEM_RMRF method, and the OA increases by 4.45% and
4.78%, respectively (as shown in Table 1), which indicates the effectiveness of increasing
spatial constraints between neighboring objects in improving OBCD accuracy. Compared with
OEM_MRF, OEM_RMRF further increases the OBCD accuracy by fully considering the spec-
tral, shape, and size difference of the neighboring objects, where the OA increases by 0.33% and
the kappa coefficient increases by 0.01 (as seen in Table 1).

Figure 9 shows the experimental results of different methods carried out for data set 3. We
can see that false alarms caused by linear objects [e.g., region A in Fig. 9(a)] and the limitation of
OEM [e.g., region B in Fig. 9(a)] still exist. And the false alarms can be removed when incor-
porating MRF model, as shown in Figs. 9(b) and 9(c). Compared with OEM, OEM_MRF
increases the kappa coefficient by 0.1, and the kappa coefficient of our proposed method
achieves the maximum of 0.73 (as seen from Table 1), which verifies the effectiveness of the
proposed refined MRF model.

On average, we can see in Table 1 that FA can be reduced by 20% and OA can be increased
by 5% when introducing MRF model in the three data sets. Meanwhile, our proposed
OEM_RMRF method can further improve the performance of OBCD for the more accurate
definition of neighboring object influence, which verifies its effectiveness in utilizing the spatial
constraints.

5 Conclusion

In this paper, a refined MRF model was integrated with an EM algorithm for OBCD, which
avoided the drawback of treating each object independently in traditional OBCD. Object spec-
tral, shape, and size difference were fully considered when constructing the refined MRF model,
which was more accurate than traditional MRF model. Three experiments were conducted to
assess the performance of the proposed OEM_RMRF method. Through the comparison and
analysis with OEM and OEM_MRF, we could draw the conclusion that spatial constraints
are of great importance in OBCD, the OBCD accuracy could be improved greatly by introducing
MRF model. Moreover, the proposed OEM_RMRF could further improve OBCD accuracy for
the interactions between neighboring objects are more accurately delineated. Therefore, it is well
confirmed that the proposed OEM_RMRF is an effective approach for OBCD.
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Fig. 9 CD results obtained using different methods for data set 3. (a) OEM. (b) OEM_MRF.
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